

Benzoquinone-Linked Fullerenes with a Pyrrolidine Spacer

Masahiko Iyoda,* Fatema Sultana, Ai Kato, Masato Yoshida, Yoshiyuki Kuwatani, Mitsuo Komatsu,[†] and Shigeru Nagase

Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-03

[†]Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565

(Received September 24, 1996)

The synthesis of 1,4-benzoquinone-linked fullerenes (**1** and **2**) and an attempted synthesis of 1,2-benzoquinone-linked fullerenes (**9** and **10**) are described with the interesting redox behavior of these benzoquinone-linked fullerenes.

We have recently reported the [2+3] cycloaddition reactions of C₆₀ with α -silylamine derivatives to produce pyrrolidine- and 1-pyrrolidine-fused fullerenes.¹ Our continuing interests in the interaction between C₆₀ and 1,4-benzoquinones² prompted us to investigate the benzoquinone-linked fullerenes with a pyrrolidine spacer, *i.e.*, **1** and **2**. As shown in Figure 1a, the intramolecular distances between the C₆₀- and quinone-*sp*²-carbons are 2.8-3.4 Å. Therefore, a π - π interaction between π -electrons of the C₆₀ and quinone moieties in **1** and **2** can be expected.

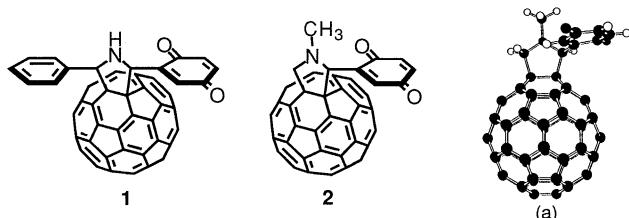
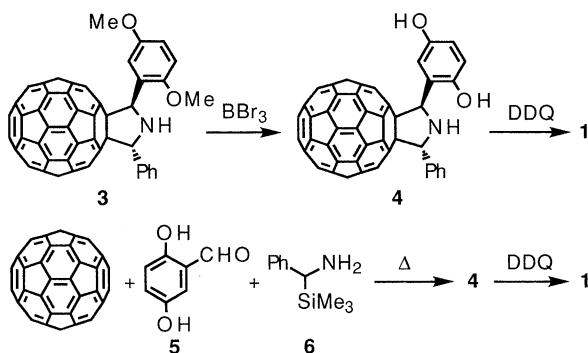
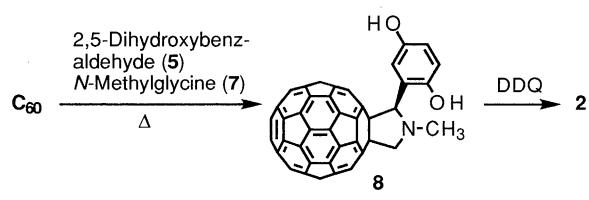
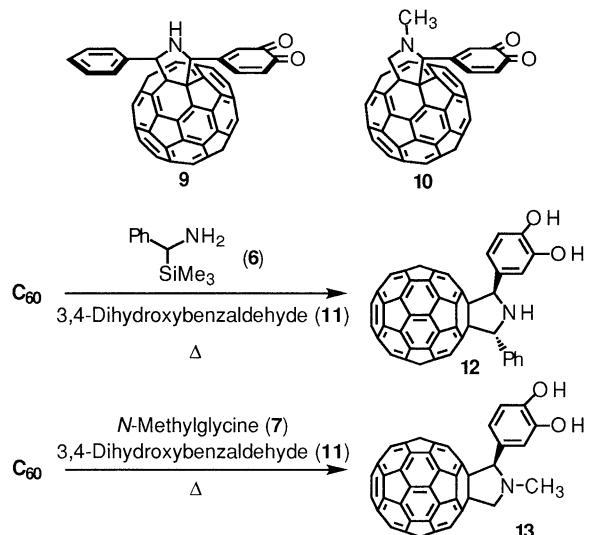



Figure 1. (a) AM1 optimized structure of **2**.


For the synthesis of **1**, we developed two methods as shown in Scheme 1. The first method starts from **3**.¹ The reaction of **3** with excess amounts of BBr₃ in benzene at 5-7 °C for 30 min gave a mixture of the hydroquinone (**4**) and by-products which were hardly separable. The oxidation of the crude **4** with excess amounts of DDQ in benzene-ethyl acetate produced the desired **1** in 34% yield based on **3**.³ As for the second method, the direct reaction of C₆₀ with 2,5-dihydroxybenzaldehyde (**5**) and α -trimethylsilylbenzylamine (**6**)⁴ in *o*-dichlorobenzene at 160-170 °C for 24 h produced the hydroquinone **4** (30%), which was oxidized with DDQ to give **1** in 50% yield.

Scheme 1.

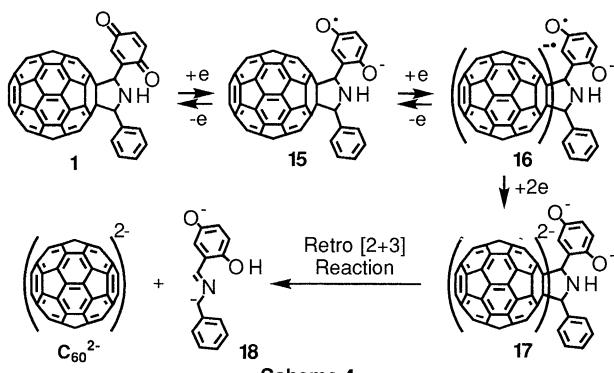

Syntheses of many *N*-methyl-fulleropyrrolidine derivatives have been reported by Prato and Maggini.⁵ However, no

benzoquinone-linked fulleropyrrolidine has been reported until now. Therefore, we worked on the benzoquinone-linked molecule **2** using Prato-Maggini's method. The reaction of C₆₀ with **5** (4 equiv.) and *N*-methylglycine (**7**) in refluxing toluene for 48 h produced the [2+3] cycloadduct **8** in 23% yield with the recovered C₆₀ (51%). Although the hydroquinone (**8**) was hardly soluble in common organic solvents; **8** could be satisfactorily oxidized with DDQ in toluene-ethyl acetate for 3 h at room temperature to lead to the desired **2** in 38% yield.

Scheme 2.

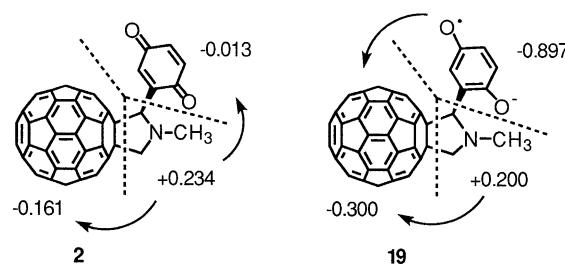
Since 1,2-benzoquinone shows interesting electronic properties, we attempted the synthesis of the 1,2-benzoquinone-linked fulleropyrrolidines (**9** and **10**). As shown in Scheme 3, the reaction of C₆₀ with 3,4-dihydroxybenzaldehyde (**11**) and **6** in *o*-dichlorobenzene at 180-190 °C for 24 h produced the 1,2-hydroquinone derivative **12** (60%). A similar reaction of C₆₀ with **11** and **7** in refluxing toluene gave the cycloadduct **13** in 76% yield. The oxidation of **12** and **13** with excess amounts of DDQ at room temperature produced the products which might be assigned to the 1,2-quinone derivatives (**9** and **10**).⁶ The isolation and characterization of **9** and **10** are now under investigation.

Scheme 3.


In order to examine the redox behavior of the new fullerenes, the reduction potentials of 1,4-benzoquinone (**14**),

C₆₀, 1, and 2 were measured by cyclic voltammetry (Table 1). Although the 1,4-benzoquinone-linked fulleropyrrolidine **2** showed five reversible redox waves corresponding to the reduction of the 1,4-benzoquinone and fullerene moieties, **1** was found to be unstable under the redox conditions. Thus, the first and second redox waves of **1** were reversible, but the third, fourth and fifth waves were not clear and were irreversible. Interestingly, the cyclic voltammogram of **1** gradually changed to that of **C₆₀** after several scannings swept from 0 to -2.0 V. The decomposition of **1** by the electrochemical reduction can be explained as follows. As shown in Scheme 4, the first step [E_{red1}(Q)] is the reduction of the 1,4-benzoquinone moiety to the corresponding semiquinone radical **15**. The second reduction [E_{red1}(C₆₀)] corresponds to the reduction of the fullerene moiety to the fullerene anion radical **16**. The third and fourth reductions seem to form the hydroquinone-fullerene tetraanion **17** which may be destabilized either by the acidic hydrogen (N-H) or by the electronic interaction between the fullerene dianion and the hydroquinone dianion. Thus, the acidic hydrogen bound to nitrogen of the pyrrolidine ring in **17** may be quenched by the hydroquinone dianion, and the retro [2+3] reaction occurs to produce **18** and C₆₀²⁻.

Table 1. Cyclic voltammetric data of 1,4-benzoquinone (**14**), C₆₀ and fullerenes (**1** and **2**) (V)^a


Compound	E _{red1} (Q)	E _{red1} (C ₆₀)	E _{red2} (C ₆₀)	E _{red2} (Q)	E _{red3} (C ₆₀)
14	-1.00			-1.85	
C ₆₀		-1.12	-1.52		-1.98
1	-1.00	-1.15	-b	-b	-b
2	-0.93	-1.26	-1.61	-1.83	-2.20

^aConditions: n-Bu₄NPF₆ (0.05 mol dm⁻³), 1,2-dichlorobenzene, 25 °C, glassy carbon working and Pt counter electrodes, 100 mV s⁻¹. Potentials were measured vs Fc/Fc⁺ using Ag/Ag⁺ reference electrode. ^bNot observed.

Scheme 4.

Since the redox potentials of the benzoquinone-linked fullerene (**2**) show the interaction between the benzoquinone and fullerene moieties, the ab initio calculations on **2** and its monoanion (**19**) have been carried out.⁷ Although the LUMOs of the C₆₀ and benzoquinone moieties in **2** keep their own properties unchanged, some charge transfer can be calculated as shown in Figure 2. Thus, **2** shows a partial charge transfer from the amino group to the C₆₀ core, and the benzoquinone moiety remains unchanged. In the case of the monoanion **19**, a fairly large charge transfer occurs from the amino group (0.200) and the semiquinone moiety (0.103) to the C₆₀ core.

Figure 2. Calculated charge density in **2** and **19**.

The redox behavior of **1** and **2** shown in Table 1 agrees with the MO calculations. The first redox potential of **2** shows a positive shift, reflecting the lowering of the LUMO level which mainly belongs to the benzoquinone moiety. The amino groups in **2** and **19** act as a π-donor to the C₆₀ core, and a similar effect in **1** and **15-17** may increase the acidity of the amino-proton. Consequently, the interaction between the amino-proton and the hydroquinone dianion may result in the retro [2+3] reaction very easily to produce C₆₀²⁻ and **18**.

We thank Drs. S. Sasaki and H. Matsuyama, Tokyo Metropolitan University, for helpful discussions. Financial support by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, and Culture, Japan (06227257 and 06224223) is gratefully acknowledged.

References and Notes

- M. Iyoda, F. Sultana, and M. Komatsu, *Chem. Lett.*, **1995**, 1133.
- M. Iyoda, F. Sultana, S. Sasaki, and M. Yoshida, *J. Chem. Soc., Chem. Commun.*, **1994**, 1929.
- The structures of all new compounds reported here were fully characterized by the spectroscopic analysis. The selected data are as follows. **1**: black fine cryst., mp 130-140 °C (decomp); FAB-MS (*m/z*) 946 (M⁺+1); ¹H NMR (acetone-d₆/CS₂) δ 3.76 (s, 1H, NH), 5.95 (s, 1H, CH), 6.14 (s, 1H, CH), 6.76-6.84 (m, 2H, quinone CH), 7.28 (t, *J* = 7.3 Hz, 1H, *p*-Ph), 7.36 (t, *J* = 7.6 Hz, 2H, *m*-Ph), 7.62 (d, *J* = 2.4 Hz, 1H, quinone CH), 7.89 (d, *J* = 8.3 Hz, 2H, *o*-Ph); UV-vis (C₆H₁₂) λ_{max} (ε) 268 (94800), 311 (43000), 326 (44500), 428 (649), 685 (226), 696 (711). **2**: black fine cryst., mp 200 °C (decomp.); MS (*m/z*) 885 (M⁺+2); ¹H NMR (CDCl₃/CS₂) δ 2.81 (s, 3H, CH₃), 4.32 (d, *J* = 9.5 Hz, 1H, CH₂), 4.93 (d, *J* = 9.5 Hz, 1H, CH₂), 5.29 (s, 1H, CH), 6.80 (dd, *J* = 10.1, 2.4 Hz, 1H, quinone CH), 6.83 (d, *J* = 10.1, 1H, quinone CH), 7.35 (d, *J* = 2.4 Hz, 1H); UV-vis (CH₂Cl₂) λ_{max} (ε) 310 (35800), 322 (36000), 429 (5120), 686 (486), 698 (530). **4**: black fine cryst., mp 200 °C (decomp.); FAB-MS (*m/z*) 947 (M⁺); ¹H NMR (acetone-d₆/CS₂) δ 4.50 (br. s, 1H, NH), 5.96 (s, 1H, CH), 5.97 (s, 1H, CH), 6.55-6.58 (m, 2H, hydroquinone CH), 6.91 (br. s, 1H, hydroquinone CH), 7.31 (t, *J* = 7.5 Hz, 1H, *p*-Ph), 7.41 (t, *J* = 7.5 Hz, 2H, *m*-Ph), 7.85 (d, *J* = 7.5 Hz, 2H, *o*-Ph). **8**: black fine cryst., mp 220 (decomp); FAB-MS (*m/z*) 885 (M⁺); ¹H NMR (CDCl₃/CS₂) δ 2.97 (s, 3H, CH₃), 4.26 (d, *J* = 10.1, 1H, CH₂), 4.30 (s, 1H, OH), 4.98 (s, 1H, CH), 5.05 (d, *J* = 9.8, 1H, CH₂), 6.67 (dd, *J* = 8.6, 2.8 Hz, 1H, hydroquinone CH), 6.73 (d, *J* = 8.6, 1H, hydroquinone CH), 6.82 (d, *J* = 2.8, 1H, hydroquinone CH), 10.47 (s, 1H, OH).
- M. Komatsu, M. Ohno, S. Tsuno, and Y. Ohshiro, *Chem. Lett.*, **1990**, 575; M. Ohno, H. Miyata, M. Komatsu, and Y. Ohshiro, *Tetrahedron Lett.*, **32**, 5093 (1991).
- M. Maggini, G. Scorrano, and M. Prato, *J. Am. Chem. Soc.*, **115**, 9798 (1993); M. Maggini, G. Scorrano, A. Bianco, C. Toniolo, R. P. Sijbesma, F. Wudl, and M. Prato, *J. Chem. Soc., Chem. Commun.*, **1994**, 305; M. Maggini, A. Karlsson, L. Pasimeni, G. Scorrano, M. Prato, and L. Valli, *Tetrahedron Lett.*, **35**, 2985 (1994); M. Maggini, A. Karlsson, G. Scorrano, G. Sandona, and M. Prato, *J. Chem. Soc., Chem. Commun.*, **1994**, 589.
- The 1,2-quinone derivatives (**9** and **10**) were unstable to atmospheric oxygen, acids, and base.
- The calculations were carried out at the HF/6-31G level on the AM1 optimized geometries using the GAUSSIAN 94 program. The split valence 6-31G basis set on O was augmented by the diffuse s and p functions (exponent 0.0945).